Graphene: Enabling better batteries for electric vehicles

Mark Thompson, Managing Director, Talga Resources
Forward Looking Statement & Disclaimer

This presentation has been prepared by Talga Resources Ltd (ACN 138 405 419) ("Issuer") for the sole purpose of providing an overview of its current prospects, proposed exploration, products and development strategy to recipients ("Recipient"). This presentation and its contents are provided to the Recipient in confidence and may not be reproduced or disclosed in whole or in part to any other person, without the written consent of the Issuer. The presentation is based on information available to the Issuer as at the date of the presentation.

This document includes forward-looking statements. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements. Although the Issuer believes that the expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties, and no assurance can be given that actual results will be consistent with these forward-looking statements.

No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation. To the maximum extent permitted by law, none of the Issuer, its directors, employees or agents, advisers, nor any other person accepts any liability for any loss arising from the use of this presentation or its contents or otherwise arising in connection with it, including, without limitation, any liability arising from fault or negligence on the part of the Issuer or its directors, employees or agents. Nothing in this Presentation is a promise or representation as to the future. Statements or assumptions in this presentation as to future matters may prove to be incorrect and differences may be material. The Issuer does not make any representation or warranty as to the accuracy of such statements or assumptions.

The information in this presentation does not take into account the investment objectives, financial situation and particular needs of any Recipient. The Recipient should not make an investment decision on the basis of this presentation alone and the Recipient should conduct its own independent investigation and assessment of the content of this presentation. Nothing in this presentation constitute financial product, investment, legal, tax or other advice. Nothing in this presentation should be construed as a solicitation to buy or sell any security or to engage or refrain from engaging in any dealing in any security.

Photographs, maps, charts, diagrams and schematic drawings appearing in this presentation are owned by and have been prepared by or commissioned by the Issuer, unless otherwise stated. Maps and diagrams used in the presentation are illustrative only and may not be drawn to scale. Unless otherwise stated, all data contained in charts, graphs and tables is based on information available at the date of this presentation. By accepting this presentation the Recipient agrees to be bound by the foregoing statements.
Why Graphene?

Graphene is an ultra-thin form of graphitic carbon which can be added to new or existing materials.

It can make materials stronger, lighter and more functional, thereby increasing performance and sustainability.

In electric vehicles there are numerous applications with great promise in production and operation.

This presentation reviews how graphene can solve a major problem in next-gen Li-ion batteries where increasing amounts of silicon are sought.
Higher capacity through silicon anode

The electric mobility industry needs higher capacity batteries for longer range

- Silicon anode is theoretically capable of >10x energy capacity of graphite anode in Li-ion battery
- But today, silicon is being blended into graphite in only small amounts (3-5% weight) due to major and fundamental issues
- Higher energy capacity can translate to longer range of electric vehicles or less weight (smaller batteries), so solving silicon issues can have big impact on EV use and production
Higher capacity through silicon anode

Silicon anodes have profound issues to overcome in practical use

- Silicon changes volume by 300% in charge/discharge cycles (compared to graphite 10%)
- Volume change leads to a range of issues including:
 - pulverization/breakage
 - delamination from current collector
 - build-up of thick, solid electrolyte interface (SEI) decreasing lithiation kinetics and ‘robbing’ lithium from cathode and electrolyte
- So the more silicon, the shorter battery life, and failure ensues (rapidly)

Choi & Aurbach 2016 https://www.nature.com/articles/natrevmats201613#f2
Graphene to the rescue

Ultra-thin carbon nanomaterial enabling practical silicon anodes

- Graphene additives or composites can enable silicon anodes to stabilise and extend cycle life
- Graphene can work in various modes including protective coatings and nano-structures to control pulverisation during volume change, retain kinetics and moderate SEI formation

Samsung, Nature Communications 8:1561. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities.
Silicon Anode Composite: Talnode-Si®

Graphene silicon composite electrode additive for ‘drop-in’ blending with current graphite anodes

- Nanostructure Porous Graphene Silicon composite electrode additive for existing graphitic anodes
- Produced by mechanical method (not CVD) using external silicon supply and Talga graphene
- Production method includes dry mixing and blending with graphene, utilizing off-the-shelf industrial technology for commercial scalability
- First cycle efficiency up to 91% dependent on silicon loading, good cycle life & reversible coulombic efficiency in the range 99.7%-99.9%
High Capacity Anode

Talga graphene-enhanced silicon anode blended into commercial graphite anode

- The silicon content in Talnode-Si is ~30% Wt Silicon
- Enables a range of loadings in existing anode blends
- Commercial impact is potential longer range of electric vehicle, or same range with less weight from smaller battery

Lithiation: 1st cycle: 0.1C to 5mV then stays at 5mV until 0.01C, other cycles: 0.2C to 5mV then stay at 5mV until 0.025 C.

De-lithiation: 1st cycle: 0.1C to 1.0V, other cycles: 0.2C to 1.0V.
Thanks!

TALGA RESOURCES LTD
ASX Code: TLG

Head Office: 1st Floor, 2 Richardson Street, West Perth WA 6005, Australia
Phone: +61 8 9481 6667
Email: info@talagroup.com
Website: www.talagroup.com

GLOBAL OPERATIONS
Talga Sweden: Vänortvägen 2, 981 32 Kiruna, Sweden
Talga Sweden: Storgatan 7, 972 38 Luleå, Sweden
Talga UK: The Bradfield Centre, 184 Cambridge Science Park, Cambridge CB4 0FQ, UK
Talga Germany: Prof.-Hermann-Klare-Str. 25, 07407 Rudolstadt, Germany
Talga Japan: Takatsuki, 569-1046, Osaka, Japan